
Bank Record Generation Program 1

Jacob Huebner

ITMD 411-02

Lab 04

5/9/19

HuebDesk Helpdesk - Final Project Report

Description

HuebDesk is a helpdesk application written in Java. The application was built with JavaFX,

Gluon Mobile Plugin, Gluon Glisten API, and Java JDBC. The application connects to a MySQL

database, and includes fully functional prepared statements for all database operations.

The application includes other features such as SHA256 password hashing, relational table

designs, desktop support, mobile support (android and ios), mobile-first design, material design

scheme, responsive GUI design, exception handling, inheritance modeling, and full

documentation (UML, use cases, etc.). Link to video demonstration here.

Bank Record Generation Program 2

Document Contents

This document is divided into 6 sections.

1. Instructions

2. Requirements

3. Deliverables

4. Snapshots of Requirements

5. Snapshots of Deliverables

6. Snapshots of Extra Credit

Bank Record Generation Program 3

Instructions

How to run HuebDesk

1. First, extract the “final project beta 1App” .tar or .zip file and open it’s contents.

2. Next, open the “bin” directory.

3. Finally, double click “Final Project Beta 1App.bat.

Bank Record Generation Program 4

Requirements

1. Create database table: Must create database tables (2 minimum)

2. Create Java files for interactivity: At least 1 class for login window and ticket window

for both end user and admin. Must feature a rich GUI.

3. Create a java file for database connectivity / CRUD implementations: Create files for

Java JDBC implementation. The class should perform inserting, updating, deleting,

viewing, and closing of desired tickets.

4. Run your app and snapshot the following runtime work for credit:

a. Insert at least 5 tickets into the DB table. Include a record with your name into the

table.

b. Update your record by changing your ticket description.

c. Show a view of your updated ticket.

d. Delete your ticket form the DB.

e. Close two existing tickets.

f. Lastly, show a table view of all of your tickets.

5. Include the following for credit into Blackboard:

a. A doc file of snapshots labeled appropriately. (please provide any login

credentials for admin and regular users.

b. Include a program description

c. Include a working .jar file of your app

d. Include a demonstration of your running app.

Bank Record Generation Program 5

Deliverables

1. CompletedJava application (Archived in a .zip file)

2. Documentation

a. UML diagram

b. Use case model

c. ER model

d. Relational database model

3. Link to video demonstration

4. .jav file of the java application

Bank Record Generation Program 6

Snapshots of Requirements

Snapshot 1 – Insert 5 tickets into the database

1.a Create initial ticket

Bank Record Generation Program 7

1.b Create five more

Bank Record Generation Program 8

1.c Screenshot of database

Bank Record Generation Program 9

Snapshot 2 – Update your record by changing your ticket description.

2.a Updating ticket (creates note and adds it to ticket)

Bank Record Generation Program 10

2.b Creating note and viewing new note

Bank Record Generation Program 11

Snapshot 3 – Delete your ticket form the DB.

Deleting tickets from a database does not follow best practices. Ideally, all tickets should be

retained. But there is functionality to delete a ticket, but the button has been left out of the build.

3.a Code to delete ticket

3.b Result on execution

Bank Record Generation Program 12

Snapshot 4 – Close two existing tickets

4.a – Closing two tickets

Bank Record Generation Program 13

Snapshot 5 – Show a table view of all of your tickets.

1.a – Normal User view (only user tickets)

User credentials (case-sensitive)

Username: jschmoe

Password: password

Bank Record Generation Program 14

1.b – Admin view (All user tickets)

User credentials (case-sensitive)

Username: jhuebner

Password: ILoveBears

Bank Record Generation Program 15

Bank Record Generation Program 16

Snapshots of Deliverables

Snapshot 1 – Completed java application (Archived in a .zip file)

Snapshot 2 – Documentation

2.a – UML diagram

The image is too big for this document. To see the full image, open the “UML Map.jpg"

included in this submission. The UML map is also located in the java archive file under

“…/Doc1/UML Map”

Bank Record Generation Program 17

2.b – Use case model

Bank Record Generation Program 18

2.c – ER model

Only half of this ER model is implemented in current build.

EmployeesAdmins Users

Assets

Companies

Has

1

Departments

M

Is aIs a 11 11

Has

1

1

Has

1

M

Tickets

Has

Notes

1

M

HasHas

11

MM

Has
(assigned)

1

M

Bank Record Generation Program 19

2.d – Relational database model

Database structure
j_hueb_companies

Company ID C Name CEO_ID C Location

j_hueb_companydepartments

Company ID Department ID

j_hueb_departments

Department ID D Name D Manager_ID D Location

j_hueb_departmentemployees

Department ID Employee ID

J_hueb_employeemanagers

Employee ID Manager ID

j_hueb_employees

Employee ID E Name E Location E Username E Password E Salt

J_hueb_employeeassets

Employee ID Asset ID

j_hueb_assets

Asset ID A Order date A Invoice ID A Type A Value A Vendor A Model

j_hueb_tickets

Ticket
ID

T
Severity

T
Creation

date

T
Modified

date

T
Subject

T
Description

T Requester Employee_ID
T Assigned
Admin ID

Due date
T

Status
T

Type
T

Level

Bank Record Generation Program 20

j_hueb_ticketnotes

Ticket ID Note ID

j_hueb_notes

Note
ID

Note
Creation

date

Note
Modified

date
N Email CC N Email BCC N

Body
N Author Employee ID

User privileges

j_hueb_userroles

Employee ID Role ID

j_hueb_roles

Role ID Role name

Constraints & Assumptions
 All Employees must have a one role.
 All Employees can only be assigned to one department, and to one manager.
 Company, Department, and Manager can be null.
 A company exists, a department exists, and a CEO employee exists.
 If no tech is specified, a technician will automatically be assigned.
 The requestor is set as the person who created the ticket
 At least one CC email is automatically entered, and it is the original user assigned.

Bank Record Generation Program 21

Snapshot 3 – Link to video demonstration

Link the video below:

https://youtu.be/AX1QnLYC_o0

Snapshot 4 – .Jar file for java application

This application is stored as a .zip/.tar file because it has multiple .jar files. Both files have been

included in this submission.

Bank Record Generation Program 22

Snapshots of Extra Credit

Extra Credit 1 – JavaFX

The app is completely built in JavaFX.

Extra Credit 2 – Prepared Statements

All SQL statements are made using prepared statements

Extra Credit 3 – Relational Table Designs

(See Devilerable Snapshot 2.d)

Extra Credit 4 – Entity, UML, Use cases

(See Devilerable Snapshot 2.a, 2.b, 2.c)

Bank Record Generation Program 23

Extra Credit 5 – Inheritance modeling

Inheritance can be seen in the Employee class. There are two types of users, “users” and

“admins”. Both inherit the employee class. Admins and employees share some functions like

logging in.

Bank Record Generation Program 24

Extra Credit 6 – Password hashing (My favorite)

I did not store plain text passwords. Instead, I salted and hashed the passwords with SHA256.

First, I converted the plaintext password to a byte array

Next, I generated “salt” using Java SecureRandom

After that, I added the salt to the password.

Finally, I used Java MessageDigest (specifying “SHA256”) to hash the password.

Here is what the result looks like in the database:

This is the datatype of the password and salt. As you can see, the password is 32 bytes (or 256

bits. Hence “SHA256”). I could have generated any size salt so I went with16 bytes.

Here is the code I used. It goes

1. getHash()

2. makeSafeSalt()

getHash()

3.
4. /*
5. * getHash returns a hashed version of any password given
6. * the password string and a salt
7. *
8. * @param password the password to be hashed
9. *
10. * @param salt the salt to be added to the hash

Bank Record Generation Program 25

11. *
12. * @return hashresult the resulting SHA-256 hash
13. *
14. */
15. public byte[] getHash(String password, byte[] salt) {
16. byte[] hashresult = null;
17.
18. // Attempt to hash password
19. try {
20. // Create SHA-256 message digest
21. MessageDigest md = MessageDigest.getInstance("SHA-256");
22.
23. // Pass the salt to the digest for computation
24. md.update(salt);
25.
26. // Generate the hash for the salted password
27. hashresult =

md.digest(password.getBytes(StandardCharsets.UTF_8));
28.
29. } catch (NoSuchAlgorithmException e) {
30. System.out.println("getHash failed");
31. e.printStackTrace();
32. }
33.
34. return hashresult;
35. }
36.

makeSafeSalt()

37. /*
38. * makeSafeSalt return a new secure random salt
39. *
40. * @return salt the new salt
41. */
42. public byte[] makeSafeSalt() {
43. byte[] salt = null;
44.
45. // Generate random salt
46. try {
47. SecureRandom random = new SecureRandom();
48. salt = new byte[16];
49. random.nextBytes(salt);
50. }
51. catch(Exception e) {
52. System.out.println("makeSafeSalt failed");
53. e.printStackTrace();
54. }
55.
56. return salt;

 }

Bank Record Generation Program 26

Bank Record Generation Program 27

Extra Credit 7 – HuebDesk Brand Resources

By using the HuebDesk trademark, you agree to follow these Guidelines as well as our Terms of

Service and all other rules and policies:

 Primary color must be #006cc1

 The ‘H’ and ‘D’ in HuebDesk must be capitalized

 All advertising must feature Bears (excluding scenic landscapes)

I WILL find you if I find any “advertisements without bears” and yes this IS a written threat.

Official Branding

Bank Record Generation Program 28

Bank Record Generation Program 29

